Vienna Ab initio Simulation Package

The Vienna Ab initio Simulation Package, better known as VASP, is a package for performing ab initio quantum mechanical calculations using either Vanderbilt pseudopotentials, or the projector augmented wave method, and a plane wave basis set.[2] The basic methodology is density functional theory (DFT), but the code also allows use of post-DFT corrections such as hybrid functionals mixing DFT and Hartree–Fock exchange (e.g. HSE,[3] PBE0[4] or B3LYP[5]), many-body perturbation theory (the GW method) and dynamical electronic correlations within the random phase approximation.

Stable release
V6.1.0.28Jan20[1] / January 20, 2020; 20 months ago (2020-01-20)[1]
Available inEnglish
TypeDensity functional theory, Many-body perturbation theory

Originally, VASP was based on code written by Mike Payne (then at MIT), which was also the basis of CASTEP.[6] It was then brought to the University of Vienna, Austria, in July 1989 by Jürgen Hafner. The main program was written by Jürgen Furthmüller, who joined the group at the Institut für Materialphysik in January 1993, and Georg Kresse. VASP is currently being developed by Georg Kresse; recent additions include the extension of methods frequently used in molecular quantum chemistry (such as MP2) to periodic systems. VASP is currently used by more than 1400 research groups in academia and industry worldwide on the basis of software licence agreements with the University of Vienna.

See alsoEdit


  1. ^ a b "NEW RELEASE: VASP 6.1.0".
  2. ^ Georg, Kresse (March 31, 2010). "VASP Group, Theoretical Physics Departments, Vienna". Retrieved February 21, 2011.
  3. ^ Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias (2003-05-08). "Hybrid functionals based on a screened Coulomb potential". The Journal of Chemical Physics. 118 (18): 8207–8215. doi:10.1063/1.1564060. ISSN 0021-9606.
  4. ^ Perdew, John P.; Ernzerhof, Matthias; Burke, Kieron (1996-12-08). "Rationale for mixing exact exchange with density functional approximations". The Journal of Chemical Physics. 105 (22): 9982–9985. doi:10.1063/1.472933. ISSN 0021-9606.
  5. ^ Kim, K.; Jordan, K. D. (October 1994). "Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer". The Journal of Physical Chemistry. 98 (40): 10089–10094. doi:10.1021/j100091a024. ISSN 0022-3654.
  6. ^ Martijn Marsman (October 14, 2011). "History of VASP". Retrieved April 30, 2012.

External linksEdit