TeraChem is a computational chemistry software program designed for CUDA-enabled Nvidia GPUs. The original development started at the University of Illinois at Urbana-Champaign and was subsequently commercialized. It is currently distributed by PetaChem, LLC, located in Silicon Valley.[1] As of 2020, the software package is still under active development.

Initial releaseMay 2010; 11 years ago (2010-05)
Stable release
1.93P / August 16, 2017; 4 years ago (2017-08-16)
Written inC, CUDA
Operating systemLinux
Platformx86-64, Nvidia GPUs
TypeMolecular modelling
LicenseProprietary commercial software

Core featuresEdit

TeraChem is capable of fast ab initio molecular dynamics and can utilize density functional theory (DFT) methods for nanoscale biomolecular systems with hundreds of atoms.[2] All the methods used are based on Gaussian orbitals, in order to improve performance on contemporary (2010s) computer hardware.[3]

Press coverageEdit

  • Chemical and Engineering News (C&EN) magazine of the American Chemical Society first mentioned the development of TeraChem in Fall 2008.[4]
  • Recently[ambiguous], C&EN magazine has a feature article covering molecular modeling on GPU and TeraChem.[5]
  • According to the recent post at the Nvidia blog, TeraChem has been tested to deliver 8-50 times better performance than General Atomic and Molecular Structure System (GAMESS). In that benchmark, TeraChem was executed on a desktop machine with four (4) Tesla GPUs and GAMESS was running on a cluster of 256 quad core CPUs.[6]
  • TeraChem is available for free via GPU Test Drive.


The software is featured in a series of clips on its own YouTube channel under "GPUChem" user.

  • TeraChem v1.5 release link
  • New kinds of science enabled: ab initio dynamics of proton transfer link
  • Discovery mode: reactions in nanocavities link
  • TeraChem performance on 4 GPUs: video

Major release historyEdit


  • TeraChem version 1.93P
Support for Maxwell and Pascal GPUs (e.g. Titan X-Pascal, P100)
Use of multiple basis sets for different elements $multibasis
Use of polarizable continuum methods for ground and excited states


  • TeraChem version 1.9
Support for Maxwell cards (e.g., GTX980, TitanX)
Effective core potentials (and gradients)
Time-dependent density functional theory
Continuum solvation models (COSMO)


  • TeraChem version 1.5
Full support of polarization functions: energy, gradients, ab initio dynamics and range-corrected DFT functionals (CAMB3LYP, wPBE, wB97x)


  • TeraChem version 1.5a (pre-release)
Alpha version with the full support of d-functions: energy, gradients, ab initio dynamics
  • TeraChem version 1.43b-1.45b
Beta version with polarization functions for energy calculation (HF/DFT levels) as well as other improvements.
  • TeraChem version 1.42
This version was first deployed at National Center for Supercomputing Applications' (NCSA) Lincoln supercomputer for National Science Foundation (NSF) TeraGrid users as announced in NCSA press release.


  • TeraChem version 1.0
  • TeraChem version 1.0b
The very first initial beta release was reportedly downloaded more than 4,000 times.

Publication listEdit

I. S. Ufimtsev, N. Luehr and T. J. Martinez Journal of Physical Chemistry Letters, Vol. 2, 1789-1793 (2011)

C. M. Isborn, N. Luehr, I. S. Ufimtsev and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 7, 1814-1823 (2011)

N. Luehr, I. S. Ufimtsev, and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 7, 949-954 (2011)

I. S. Ufimtsev and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 5, 2619-2628 (2009)

I. S. Ufimtsev and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 5, 1004-1015 (2009)

I. S. Ufimtsev and T. J. Martinez Journal of Chemical Theory and Computation, Vol. 4, 222-231 (2008)

I. S. Ufimtsev and T. J. Martinez Computing in Science and Engineering, Vol. 10, 26-34 (2008)

Nirupam Aich, Joseph R V Flora and Navid B Saleh Nanotechnology, Vol. 23, 055705 (2012)

Kregg D. Quarles, Cherno B. Kah, Rosi N. Gunasinghe, Ryza N. Musin, and Xiao-Qian Wang Journal of Chemical Theory Computation, Vol. 7, 2017–2020 (2011)

M. P. Andersson and S. L. S. Stipp Journal of Physical Chemistry C, Vol. 115, 10044–10055 (2011)

Rosi N. Gunasinghe, Cherno B. Kah, Kregg D. Quarles, and Xiao-Qian Wang Applied Physics Letters 98, 261906 (2011)

Xiao-Qian Wang Physical Review B 82, 153409 (2010)

Andrzej Eilmes Lecture Notes in Computer Science, 7136/2012, 276-284 (2012)

Ruben Santamaria, Juan-Antonio Mondragon-Sanchez and Xim Bokhimi J. Phys. Chem. A, ASAP (2012)

See alsoEdit